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An approximate  method is proposed for calculat ing the drag  and veloci ty  of spher ica l  pa r t i c les  
in a v i scous  medium. 

Numerous  exper imenta l  inves t iga t ions  [1-3],  e x p r e s s e d  in the fo rm of Prandtl ,  Rayleigh, etc.  d iag rams ,  have 
es tabl ished a graphica l  re la t ion  between drag and Reynolds number .  So far ,  however ,  a genera l  mathemat ica l  re la t ion  
between these quant i t ies  has not been found, and the res i s ta f ice  to the motion of a sphere  in a v i scous  medium is  
de te rmined  by the Stokes, Prandt l -Al len ,  and Newton-Ri t t inger  laws in the laminar ,  t ransi t ion,  and turbulent  r e g i m e s ,  
re  spect ively. 

In this  paper ,  an approximate  re la t ion  between these  th ree  laws is proposed on the bas i s  of an analysis  of 
Oseen ' s  theore t i ca l  solution. 

Oseen ' s  t heo re t i ca l  fo rmula  gene ra l i zes  the laws of Stokes and Newton. This  b e c o m e s  espec ia l ly  obvious if we 
r e p r e s e n t  it in the fo rm 

F=Cv~dv+ CDS p~)2 (1) 
2 

However,  as pointed out in [4], Oseen ' s  fo rmula  does not have special  advantages over  the Stokes fo rmula  and is 
exper imenta l ly  substant iated in the same range  of Reynolds numbers .  This is probably because  of the assumptions 
made in de te rmin ing  the constant coeff ic ients  in Oseen ' s  t heo re t i ca l  solution (according to Oseen CD = 4.5 [4]; at the 
same t ime,  according  to Newton and Rit t inger  CD = 0.5 [5]). If we take the value of C D in Oseen ' s  f o rm u la  equal to the 
value proposed by Newton and Ri t t inger ,  it is then exper imenta l ly  conf i rmed not only in the region of applicat ion of the 
Stokes fo rmu la  but also in the reg ion  of application of the Newton-Ri t t inger  formula.  Consequently, Oseen ' s  fo rmula  
b e c o m e s  inapplicable only in the t rans i t ion  r eg ime .  

This conclusion can also be drawn f rom an analysis  of the boundary conditions and s tar t ing assumpt ions  in 
Oseen ' s  theore t i ca l  solution, which have the fo rm 

at r = r o  v x = v u = v ~ = O ; , a s  r-~oo vx--*v; vu--~0; v~-~0. (2) 

At points r e m o t e  f rom the sphere  it i s  a ssumed that 

vx = v + V~; v u =  v~; v~ = v~, (3) 

where  v '  x, V'y, v '  z a re  quant i t ies  small  as compared  with v x and may be neglected.  

Using boundary conditions in the fo rm (2), Stokes solved the problem of the motion of a fluid at points c lose  to a 
sphere  or, what amounts to the same thing, the motion of a sphere  at very  smal l  Reynolds numbers  [4]. 

The joint  use of boundary conditions in the fo rm of (2) and (3) enabled Oseen to solve the problem of fluid motion 
not only c lose  to a sphere  but also at points r emote  f rom it. However, if we keep in mind that v x v a r i e s  continuously 
f r o m  zero  at the surface  to a value v at points r e m o t e  f rom the sphere,  while V'y and V'z vary  f rom zero  at the surface 
of the sphere  to zero  at infinity, pass ing  through a max imum between these  ex t r eme  posit ions,  it b ecom es  obvious that 
the re  is an in te rmedia te  region where it is imposs ib le  to neglec t  V'x, V'y, and V'z. In this  region as the Reynolds 
number s  i nc r ea se  t he r e  is a p r o g r e s s i v e  d e c r e a s e  in the f r ic t iona l  contribution to the total r e s i s t a n c e  of the medium, 
while the par t  played by the hydrodynamic drag  i nc rea se s .  This is not taken into account in Oseen ' s  solution, and 
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t h e r e f o r e  his fo rmula  cannot be conf i rmed over  the ent i re  range of Reynolds numbers .  

Let us cons ider  the k inemat ic  si tuation c lose  to a sphere  moving in a v i scous  medium,  making a s e r i e s  of 
assumpt ions  concern ing  the nature of the dis t r ibut ion of the hydrodynamic  p r e s s u r e  fo rces ,  which, it s eems  to us, 
make it possible  to apply Oseen ' s  fo rmula  to the t rans i t ion  r e g i m e  also. 

It is known that a sphere  moving in a v i scous  medium drags  along with it the adjacent  l a y e r s  of fluid, with which 
it is connected by mo lecu l a r  bonds and which, l ike the sphere,  exper ience  t h e d y n a m i c  p r e s s u r e  of the medium.  Since 
these  l a y e r s  exe r t  a fo rce  on the sphere ,  in de te rmin ing  the dynamic p r e s s u r e  of the fluid it i s  n e c e s s a r y  to cons ider  
the total  a r ea  S', which is  equal to the frontal  sur face  of the sphere  and the a rea  of the entrained l a y e r s  of fluid in the 

plane of the max imum c ros s  section.  

The ve loc i t i e s  of the individual fluid pa r t i c l e s  in the e n t r a i n e d i a y e r  a re  different  and depend both on the shape, 
size,  and ve loc i ty  of the pa r t i c l e  and on its dis tance f rom the sur face  of the sphere.  Prandtl  [4] has shown that the 
veloci ty  v a r i e s  f rom a value equal to the veloci ty  at the surface  of the sphere  to ze ro  at a d is tance  5 f rom the sur face  

equal to the th ickness  of the boundary l ayer .  

The dynamic p r e s s u r e  of the fluid on the boundary l aye r  can be accura te ly  de te rmined  in each specif ic  case  only if the 
law of d is t r ibut ion of the veloci ty  of the individual pa r t i c l e s  within it is  known. For  the purposes  of an approximate 
de te rmina t ion  of the dynamic p r e s s u r e  it is possible  to substi tute for  the fluid l ayer  entrained by the sphere  an 
equivalent  l ayer  of reduced  th ickness  X = kl5 , in which the veloci ty of the individual pa r t i c l e s  i s  constant  and equal to 
the veloci ty  of the sphere ,  and then ver i fy  the c o r r e c t n e s s  of th is  substitution by exper iment .  Then, the a r e a  S' used in 

de te rmin ing  the dynamic p r e s s u r e  of the medium is  equal to 

S' = S @ $1 _. a__d 'a -,I- a (d s 4- s (4) 
4 

and Oseen ' s  f o r m u l a  reduces  to the fo rm 

F = C v ~ d v  + CD ~c? 
V 2 9 

4 2 

2 

_ _  _ _  + c ,=e p 
2 

(5) 

It i s  c l ea r  f rom (5) that the d i f fe rence  f rom Oseen ' s  fo rmula  cons is t s  in the two additional t e r m s  which a re  

dominant in the t rans i t ion  region.  

In accordance with boundary l aye r  theory,  the boundary l ayer  fo rmed  in flows with apprec iab le  Reynolds numbers  

has a th ickness  5 on the o r d e r  of d/~Re, [4, 5], i . e . ,  

~. = kl 8 =klk2 d/Y:~p/p. .  (6) 

Representing (5) in dimensionless parameters, we obtain 

A B (7) 

F o r m u l a  (7) g e n e r a l i z e s  the known laws. The f i r s t  t e r m  co r r e sponds  in genera l  fo rm to the Stokes law, the 
second to the Prandt l -Al len  law, the third to Newton's  law, and the third and f i r s t  combined to Oseen ' s  law. Moreover ,  
it r e s e m b l e s  the empi r i ca l  t h r e e - t e r m  fo rmulas  of Olevski i  [3] (A = 24.0; B = 4.3; C D = 0o3183)and Heer  and F a i r  
[6] (A = 24.0; B = 3; C D = 0.34) and many empi r i ca l  formulas  proposed by var ious  authors a r e  pa r t i cu la r  express ions  

of Eq. (7) [5, 61. 

Moreover ,  it is easy to obtain Eq. (7) on the bas i s  of d imensional  analysis .  

Fo r  a body of given shape the s t eady-s t a t e  motion of the fluid is de te rmined  by a functional re la t ion  of the 

following fo rm [7]: 

F = f~(d, v, a, P, ix). (8) 
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C o n s i d e r i n g  tha t  for  a s p h e r e  the  funct ion f2 (~) = cons t  = c,  we obtain  

F=cf (d ,  v, p, ~). (9) 

Since the  a p p e a r a n c e  of f r i c t i o n  f o r c e s  r e s u l t s  in the f o r m a t i o n  of a boundary  l a y e r  a round the m o v i n g  sphe re ,  
the  r e d u c e d  t h i c k n e s s  of the  boundary  l a y e r  X s e r v e s  as a m e a s u r e  of t h e s e  f o r c e s .  

Then,  

F=cf (d ,  v, p, ~,). (10) 

o r  

B e a r i n g  in mind  that  d and ~ have  the s a m e  d imens ion ,  we can  w r i t e  

F =cf(D, v, p). (11) 

Thus ,  in so lv ing  Eq. (10) we can  c o n s i d e r  the  m o t i o n  of a s p h e r e  of  s o m e w h a t  g r e a t e r  d i a m e t e r  D = d + 2~. 

Apply ing  the m e t h o d s  of d i m e n s i o n a l  ana lys i s ,  we obta in  

F = CDavbp c (12) 

MLT -2 = cL a (LT-I) b (ML-a) c, 

w h e n c e a  = 2 ;  b = 2; c = 1; 

F = cD2v 2 p. 

R e p r e s e n t i n g  Eq. (14) in d i m e n s i o n l e s s  p a r a m e t e r s ,  we obta in  r e l a t i o n  (7). 

(13) 

(14) 

To so lve  Eq. (7) it is  su f f i c i en t  to know t h r e e  v a l u e s  of Re and the  c o r r e s p o n d i n g  va lues  of ~. On the b a s i s  of the  
c a r e f u l l y  m e a s u r e d  s p h e r e  d r a g s  r e p o r t e d  in [8], the  cons t an t  c o e f f i c i e n t s  p r o v e  to  be  equal  to  A = 22.8; B = 6.67; 
C D = 0.333. 

The  d i f f e r e n c e  be tween  the  cons t an t  c o e f f i c i e n t s  and those  obta ined  by Stokes,  P rand t l ,  and Newton is  a 
c o n s e q u e n c e  of the  a s s u m p t i o n s  which they  m a d e  in t h e i r  t h e o r e t i c a l  so lu t ions  ( a cco rd ing  to  Stokes  A = 24.0 [4]; 
a c c o r d i n g  to P r a n d t l  B = 5.6 [9]; a c c o r d i n g  to Newton C D = 0.5 [5]). M o r e o v e r ,  in r e a l i t y ,  o v e r  the e n t i r e  r a n g e  of 
Reyno lds  n u m b e r s  a l l  t h r e e  t ypes  of d r a g  a r e  encoun t e r ed ,  and c o n s i d e r i n g  one of t h e m  in i so l a t i on  l e a d s  to an 
i n a c c u r a t e  r e s u l t .  

The  c a l c u l a t e d  v a l u e s  f r o m  Eq.  (7) and e x p e r i m e n t a l  da ta  [ 1 - 3 ,  7 ,8]  a r e  in good a g r e e m e n t  (F igs .  I and 2) up to 
Re  = 3 �9 102. In the  r e g i o n  Re  = 3 .  102-104, the c a l c u l a t e d  v a l u e s  of the d r a g  c o e f f i c i e n t  ~ a r e  s o m e w h a t  h ighe r ,  and in 
the r e g i o n  Re  > 104, they  a r e  s o m e w h a t  l o w e r  than the e x p e r i m e n t a l  v a l u e s .  

To establish values of the drag coefficient in the region Re = 3 �9 102-104, the author made multiple 
measurements of the uniform rate of fall of plexiglass spheres (7 = 1.187) 0.3-2.0 cm in diameter in water. The 
experiments were conducted in a vessel 160 em tall measuring 20 • 20 cm in cross section at a water temperature of 
20 ~ The time taken by the spheres to fall was measured with a stopwatch correct to 0.1 see. Although the accuracy of 
such experiments is not high, they distinctly indicate higher values of the drag coefficient in the region Re = 
= 3 �9 102-104 as compared with the previously published data (Fig. i). This suggests that Eq. (7) can be used for the 
motion of a sphere at Reynolds numbers up to 104 with an accuracy sufficient for practical purposes. The analogous 
three-term empirical formulas of Olevskii [3] and Fair and fleer [6] have the same limits of applicability. Thus, the 
assumptions made in deriving Eq. (7) are quite justified. 

R e p r e s e n t i n g  Eq. (7) in d i m e n s i o n a l  f o r m ,  we obtain  

F = 2.85 rqxdv~O.333 ndz p--v2-q- CD~d L pv~. (15) 
4 2 2 

Equat ion  (15) is  an equa t ion  of the  four th  d e g r e e  in the  ve loc i t y  v.  T h e r e f o r e ,  i t s  solut ion,  which is v e r y  
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Fig .  1. Calcula ted  and expe r imen ta l  @ = f (Re)  c u rve s :  1) 
expe r imen t  [1 -3 ,  7 ,8] ;  2) ca lcu la ted  f rom Eqs.  (7) and (19) ; 

the points  r e p r e s e n t  the au tho r ' s  e xpe r ime n t s .  
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Fig.  2. Calcula ted and expe r imen ta l  F / F  S - 1 = f ( R e )  c u r v e s  
( F - - s p h e r e  d rag ;  F s - S t o k e s  drag) :  a) Maxwor thy ' s  da t a  [8]; 

b) P e r r y ' s  da ta  [8]; c) ca lcu la ted  f rom Eqs.  (7) and (19). 
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f r e q u e n t l y  r e q u i r e d  in p r a c t i c e ,  is  c l u m s y  and i n c o n v e n i e n t  f o r  p r a c t i c a l  c a I c u l a t i o n s .  To obta in  m o r e  c o n v e n i e n t  

e x p r e s s i o n s  f o r  the  v e l o c i t y  of the  s p h e r e  v = f ( d ,  p, p), we m a y  a p p r o x i m a t e l y  a s s u m e  tha t  ~ i s  c o n s t a n t .  Ac tua l ly ,  

c o n s i d e r i n g  the  r e l a t i o n  f o r  k and the  fac t  tha t  in the t r a n s i t i o n  r e g i o n ,  w h e r e  i t  i s  i m p o s s i b l e  to  n e g l e c t  the  l a s t  t e r m  
in e x p r e s s i o n  (15), the  ve Ioc i ty  is  an a l m o s t  l i n e a r  f u n c t i o n  of the  d i a m e t e r ,  i . e . ,  v = kAd, we  ob ta in  

~,= k~k2/ VkA-~P~ = const. 

To check the validity of this assumption, we use Eq. (7) to determine the fraction of the total drag represented 
by the term containing the quantity k at various values of the Reynolds number: 

6.67 (16) 
Px -- V R e  r 

We then  d e t e r m i n e  the  va lue  of the  e r r o r  AX (go) due to  the  f ac t  tha t  in r e a l i t y  2, d o e s  not  r e m a i n  cons t an t :  

( klk~d/~ ~ - - k l k ~ / | /  kAp I / 

h~.= k~k~ dh R-7 

Then the  e r r o r  A F  (%) in c a l c u l a t i n g  the  d r a g  at  c o n s t a n t  X 

h F = F x A)~. (18) 

Us ing  L a s h c h e n k o ' s  m e t h o d  [2, 3], fo r  a g iven  ~ = f ( R e )  we  can  d e t e r m i n e  the  v a l u e s  of v, d, and k a = 

= l a / i ~ 4  ~g ~ ~1-~- l a / / h ~  p~ , a s s u m i n g  tha t  p = 0.01 p o i s e ,  p = 1.0 g / e m  3, Pl = 7.8 g / c m  a, and g = 981 e m / s e c  2. The 
F \ 3  ~ J  R e  ~ p a ' 

c a l c u l a t i o n s  a r e  s u m m a r i z e d  in t he  t ab l e ,  f r o m  which  i t  i s  d e a r  tha t  in r e a l i t y  in the  t r a n s i t i o n  r e g i o n  (Re = 10-1000)  
the  va lue  of t he  c o e f f i c i e n t  k A r e m a i n s  a l m o s t  c o n s t a n t  and, on the a v e r a g e ,  equal  to  338, whi le  the e r r o r  in 
c a l c u l a t i n g  t h e  d r a g  d o e s  not e x c e e d  5 %. 

A b s o l u t e  E r r o r s  in Ca lcu la t ing  the  Drag  of a Rigid  Sphe re  in a V i s c o u s  
Med iu m at X = e o n s t  and k A = 338 

Re 

0.001 
O.Ol 
O.l 
1.0 

lO.O 
IO0 
200 

l OOO 
4000 

i0000 
20000 
40000 

23060 
2352 

249.9 
29.85 
4.725 
1.228 
0.918 
0.564 
0.441 
0.402 
0.382 
0.380 

crfl c,, - -  
see 

0.01570 
0.07236 
0.3300 
1.440 
5.727 

19.35 
26.87 
54.01 
93.15 

130.2 
167.0 
210.6 

d, cm 

0.0006370 
0.001376 
0.003025 
0.06950 
0.01746 
0.05168 
0.07442 
0.1850 
0,4295 
0.7680 
1.199 
1.990 

k,4 

24.40 
52.50 

109.0 
207.0 
328.0 
374.0 
361.0 
292.0 
217.0 
169.5 
139.2 
lll .0 

73.1 
60.5 
43.1 
23.2 

1.50 
5.00 
3.00 
7.00 

20.0 
29.2 
35.5 
45.3 

F~, 

0,0091 
0.0284 
0.0845 0.223 
0.445 
0.543 
0,490 
0.372 
0,238 
0.166 
0.123 
0,0877 

5F, % 

0.66 
1.72 
3.65 
4.85 
0.67 
0.71 
1.47 
2.60 
4.75 
4.85 
4.36 
3.97 

Since f o r  a g iven  ~b = f ( R e )  t he  va lues  of r and Re c o r r e s p o n d i n g  to the  m i n i m u m  e r r o r  AF  do not  d e p e n d  on the 

hp ~ 
p h y s i c a l  p r o p e r t i e s  of the  m e d i u m  and the  s p h e r e ,  we can  w r i t e  k 4 = 20.29 

�9 i)tx 

C o n s i d e r i n g  tha t  B = 4C'Dklk  2 = 6.67; k A = 338 (at p = 0.01 p o i s e ,  p = 1.0 g / c m  3, and pi = 7.8 g /cm3) ,  the  
7 

c o n s t a n t  c o e f f i c i e n t  in the l a s t  t e r m  of Eq. (15) is  equal  to K = CD/qk~ 1 /  /cAp =0.009072. 
w 

Then Eq. (15) f ina l ly  r e d u c e s  to t h e  f o r m  
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F == 2.85 n~ dv §  n d  ~'v--P +0:333 zt d ~ p v ~ (19) 
2 4 2 

Equating the drag force (19) to the difference between the gravi tat ional  and Archimedean forces ,  we obtain 

2.85~t ~ i  2.85a ]2 d~(pl_p)g (20) 
v:= (K-v-d/12)p -}- p(K +d/12) T 3(K +d/12)p" 

Equations (19) and (20) have the same l imi t s  of applicabili ty as Eq. (7) (Re a 104). 

N O T A T I O N  

F is the sphere drag force;  C v is the viscous drag coefficient; p is the dynamic viscosi ty;  d is the d iameter  of 
the sphere;  v is the s teady-s ta te  velocity of the sphere;  C D is  the dynamic drag coefficient divided by the area of the 
max imum cross  section of the moving sphere;  p is the density of medium;  r 0 is the radius  of sphere;  v , v , and v z x y 
are  the velocity components along the coordinate axes; Re is the d imens ion less  Reynolds number  6 = k2d/~fl~e is the 
th ickness  of the boundary l aye r  (Prandtl  layer) ;  k = kt6 is the reduced thickness  of the boundary layer ;  k 2 is the 
d imens ion less  proport ional i ty  factor;  k~ is the d imens ion less  reduct ion coefficient;  S' = S + S t is the total area;  
S = ~d2/4 i s  the a r ea  is the max imum cross  section of the sphere;  S 1 = v(dk § k2) is  the reduced a rea  of the boundary 
layer  in the plane of the maximum cross  section of the sphere perpendicular  to the di rect ion of motion;  C' D is the 
dynamic drag coefficient divided by the a r ea  $I; ~ = (4/3)(d(p I - p)g/pv 2) is the d imens ionless  drag coefficient;  ~ is the 
angle of attack; D = d + 2X is the reduced d iameter  of the sphere;  Pl is the density of sphere;  7 is  the specific weight; 
K, k A, A, B, c are coefficients which are  constant  for given condit ions;  g is the f ree- fa l l  accelerat ion.  
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